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Abstract
The fringed tunnelling, which can be observed in strongly coupled 1.5-
dimensional barrier systems as well as in autonomous two-dimensional barrier
systems, is a manifestation of intrinsic multi-dimensional effects in the
tunnelling process. In this paper, we investigate such an intrinsic multi-
dimensional effect on the tunnelling by means of classical dynamical theory and
semiclassical theory, which are extended to the complex domain. In particular,
we clarify the underlying classical mechanism which enables multiple
tunnelling trajectories to simultaneously contribute to the wavefunction,
thereby resulting in the formation of the remarkable interference fringe on
it. Theoretical analyses are carried out in the low-frequency regime based
upon a complexified adiabatic tunnelling solution, together with the Melnikov
method extended to the complex domain. These analyses reveal that the
fringed tunnelling is a result of a heteroclinic-like entanglement between the
complexified stable manifold of the barrier-top unstable periodic orbit and
the incident beam set. Tunnelling particles reach the real phase plane very
promptly, guided by the complexified stable manifold, which gives quite a
different picture of the tunnelling from the ordinary instanton mechanism.
More fundamentally, the entanglement is attributed to a divergent movement
of movable singularities of the classical trajectory, namely, to a singular
dependence of singularities on its initial condition.
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1. Introduction

Tunnelling phenomena are intrinsic quantum effects having no classical counterpart. By the
definition of the tunnelling effect, no classical trajectory is responsible for the tunnelling
phenomenon and it cannot be described only in terms of classical mechanics. However,
it is known that some aspects of tunnelling phenomena can be described on the basis
of semiclassical theory if we are allowed to use classical trajectories continued to the
complex domain [1]. The complexified classical trajectories indeed play a key role in the
semiclassical description of tunnelling phenomena, which is beyond the reach of the real-
domain semiclassical theory. In particular, the complex-domain semiclassical theory, e.g.
complex WKB, instanton theory and so on [2], has successfully been applied to the tunnelling
problems of one-dimensional (1D) systems and effectively 1D systems including (classically)
integrable and nearly integrable systems of multi-dimensions [3, 4]. Furthermore, it is known
that, in the 1D case, even the exact quantum theory may be recovered by the resummation of
the semiclassical expansion [5, 6].

On the other hand, the semiclassical theory of multi-dimensional tunnelling phenomena
[7–9] is a long-standing problem which seems to be far from completion. Even if we restrict
ourselves to the real domain, the existence of chaotic behaviour in classically non-integrable
multi-dimensional systems is a real obstacle to endowing semiclassical theory with a rigorously
mathematical basis, while it is known that some practical applications of semiclassical theory
work well in predicting quantal quantities which are used to characterize the quantum chaotic
nature of a system under consideration [10, 11]. The extension of the phase space to the
complex domain will introduce further complexities and difficulties. Moreover, very little is
known about the complexified chaotic dynamics of systems of more than one dimension.

In the last decade, the manifestation of chaos in multi-dimensional tunnelling phenomena
has attracted much attention [12–14], and there have been some successful attempts to apply
the (complex-domain) semiclassical theory to multi-dimensional tunnelling in classically non-
integrable systems [15–17]. In particular, it has been demonstrated that the semiclassical theory
using the complexified classical trajectories can well reproduce the complicated features of
the tunnelling wavefunction [16, 17].

Furthermore, it has been suggested that there are some profound relationships between
the tunnelling problem and some key concepts of complex dynamical systems, such as Julia
sets, Böttcher coordinates and so on [18]. However, these semiclassical studies have been
successfully made for a particular class of system operated at discretized times, i.e. quantum
maps. As for the tunnelling problem of ordinary multi-dimensional systems evolved in time
by the continuous time Schrödinger equation, it is still very unclear how the tunnelling process
is influenced by the multi-dimensionality and the underlying chaotic dynamics, although some
efforts have been made on the basis of the trace-formula formalism [15].

In previous papers [19–22], we have demonstrated that a new class of barrier tunnelling
phenomena may be observed in 1.5-dimensional (1.5D) systems (i.e. periodically driven 1D
systems). The tunnelling component, which is described by the standard instanton theory (or
its modified version) in the weak perturbation regime, becomes accompanied by a remarkable
fringe pattern as the perturbation strength exceeds a certain characteristic value.

It is easily shown that periodically perturbed 1D systems can be regarded as a specific
class of two-dimensional (2D) systems [23]. Such a fictitious 2D system can well mimic both
classical and quantum dynamics of an intrinsic 2D autonomous system which has a harmonic
channel that plays the role of the periodic perturbation in the 1.5D system. Indeed, a similar
fringed pattern on the tunnelling component is also observed for the corresponding intrinsic
2D autonomous system [21, 22, 24] and it is conjectured that the emergence of fringed patterns
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is a common feature characterizing the tunnelling phenomena of multi-dimensional barrier
systems.

Based upon the complex-domain semiclassical theory, we have also shown that such a
fringe is brought about by the interference among the multiple tunnelling trajectories, which
are never predicted by the 1D approach such as instanton theory [20–22]. Furthermore,
we have succeeded in elucidating the underlying classical mechanisms which rule the
tunnelling trajectories contributing to the fringed tunnelling, and its essence has been
sketched in preliminary reports [21, 22]. It turns out that the phenomenon is a result of a
complexified heteroclinic-like entanglement. Surprisingly enough, such an entanglement is a
manifestation of divergent movement of the movable singularities of the complexified classical
trajectory.

Note that the existence of movable singularities of the complexified classical trajectory
for non-linear systems is well known in the field of the Painlevé analysis, and the analysis of
movable singularities not only plays a key role in the judgement of integrability of a given
system [25], but also, if it is not integrable, provides further information on the nature of
chaotic motion inherent in the system [25, 26]. However, we do not know of any report on the
relationship between the entanglement of complexified invariant manifolds and the singular
behaviour of singularities.

The aim of this paper is to investigate in detail the underlying mechanism of fringed
tunnelling on the basis of the complex-domain semiclassical theory. We are particularly
concerned with the hidden classical origin of the simultaneous contribution of multiple
complexified tunnelling trajectories, which is directly reflected in the formation of the
interference fringe on the tunnelling wavefunction; how the tunnelling trajectories are
influenced by the divergent movement of the singularities together with the heteroclinic-
like entanglement between the complexified invariant sets. As a result, we will provide a
comprehensive explanation to understand the fringed tunnelling in terms of complexified
classical trajectories.

Our tunnelling model of 1.5D systems is considered as a minimal model of multi-
dimensional barrier scattering systems which can be formulated by using the standard tools
of scattering theory, such as the wave-operator and/or S-matrix [27]. Indeed, the appearance
of such a heteroclinic-like entanglement in the complex domain seems to be quite common
for multi-dimensional systems. Thus, the classical mechanism, which will be clarified in
the following, can provide a clue to understanding how the complex classical trajectories
contributing to complicated multi-dimensional tunnelling phenomena are influenced in general
by dynamical objects peculiar to the multi-dimensional complexified phase space.

This paper is organized as follows. We first introduce, in section 2, the wave-matrix of
periodically perturbed systems, and a semiclassical expression for the wave-matrix is derived
by applying the saddle-point approximation. We introduce basic tools for the representation
of classical trajectories contributing to the semiclassical wave-matrix: one is the M-set,
which is the set of initial conditions of the contributing trajectories, and the other is the L-set
representing the Lagrangian manifold of the contributing trajectories. Important remarks on
the Stokes phenomenon and on movable singularities of the complexified trajectory, which
are peculiar to the complex-domain semiclassics, are also discussed in connection with the
particular choice of the potential function. The periodically perturbed Eckart potential is used
in this paper.

In section 3 we discuss the nature of classical tunnelling trajectories in the simplest
situation of the unperturbed Eckart barrier, and we show that the (movable) singularities of
the classical solution control the asymptotic nature of trajectories, which are integrated along
topologically different integration paths with respect to singularities, namely, the reflected
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trajectory and the transmitted (i.e. tunnelling) trajectory. The critical point is introduced as the
particular initial point at which the singularities diverge. At the critical point, a discontinuous
transition occurs in the asymptotic nature of the complexified trajectory.

In section 4 we return to the periodically perturbed Eckart system. Numerically our
complex-domain semiclassical theory works extremely well and can reproduce every detail
of the complicated fringed tunnelling wavefunction. Based on the success, we numerically
elucidate the mechanism of the fringed tunnelling. Numerical evidence exhibiting the presence
of critical points on the complex initial time plane is given, and it is further shown that a
particular set Mc of initial conditions, which is a subset of M, always exists very close to
the critical point. With these numerical observations we describe how multiple tunnelling
trajectories contribute simultaneously to the semiclassical wave-matrix, thereby inducing the
remarkable interference pattern on the tunnelling wavefunction.

In section 5, we summarize the numerically observed results discussed in section 4, and
perform theoretical analyses to clarify the underlying classical mechanism of the numerical
observations. The analyses are carried out in the low-frequency regime by using an adiabatic
classical solution together with the Melnikov method extended to the complex domain. It
is first shown that the critical point corresponds to the intersection between the complexified
stable manifold (CSM) of the unstable periodic orbit on the top of the potential barrier and the
incident beam set decided by the incident condition. It is shown that the adiabatic solution
guarantees that the set Mc exists very close to the critical point and the singularities of
the trajectory starting at the critical point diverge logarithmically. The theoretical analyses
succeed in proving all the numerical observations, and the mechanism of the fringed tunnelling
is described theoretically. It is concluded that the fringed tunnelling is a manifestation of a
heteroclinic-like entanglement between the CSM and the incident beam set. The condition for
the fringed tunnelling to occur is also presented.

Section 6 is devoted to the summary and a discussion of the results obtained in this paper
and prospects for the future works subsequent to this paper.

2. Semiclassical wave-matrix

In our recent publications [19, 28], we formulated the scattering problem for periodically
perturbed systems by introducing a time-dependent analogue of the scattering eigenstate (i.e.
wave-matrix) and obtained a semiclassical expression for it. In this section, we describe the
outline of our formula.

2.1. Wave-matrix for periodically perturbed systems

The model system that we consider in this paper is of a periodically perturbed spatially
localized potential, whose Hamiltonian is represented as

H(Q, P̂ , ωt) = 1

2M
P̂ 2 + V (Q,ωt)

= 1

2M
P̂ 2 + V0(Q) + εv(Q,ωt) (M = 1) (2.1)

where Q is the coordinate and P̂ = −ih̄ ∂
∂Q

is the momentum operator. The potentials V0(Q)

and v(Q,ωt) are both localized around Q = 0 and decay promptly as limQ→±∞ V (Q) → 0
and limQ→±∞ v(Q, t) → 0, where V0 denotes the unperturbed potential independent of
time, and v is a periodic function of time, i.e. v(Q,ωt + 2π) = v(Q,ωt). Suppose that
the incident plane wave comes from the right-hand side at a constant momentum P1. If
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|P1| is sufficiently small, the quantum probability observed in the transmissive side is due to
the tunnelling effect. For such an incident condition, we can obtain a quasi-eigenstate as a
stationary solution, i.e. Floquet solution [19],

�P1(Q2, t2) = e−iE1t2/h̄〈Q2|�̂+
1(ωt2)|P1〉 (2.2)

where t2 and Q2 are the observatory time and coordinate, respectively, and 〈Q2|�̂+
1(ωt2)|P1〉

is the periodic part of Floquet solution which varies periodically being tuned to the periodic
perturbation.

The periodic stationary solution 〈Q2|�̂+
1(ωt2)|P1〉 is the wave-matrix for periodically

perturbed systems, i.e. the 1D time-dependent analogue of the wave-operator [19]. A
convenient representation of the wave-operator �̂+

1 (the wave-matrix) is obtained as
follows [19]

〈Q2|�̂+
1(ωt2)|P1〉 = lim

|Q1|→∞

√
|P1|
2πh̄

eiP1Q1/h̄

∫ ∞

0
ds〈Q2|Û (ωt2 : ωt2 − ωs)|Q1〉 exp

{
i
E1s

h̄

}
(2.3)

where Û denotes the time propagator of the system defined by

Û (θ + ωt : θ) = T exp

{
− i

h̄

∫ t

0
dsĤ (θ + ωs)

}
(T : time ordering operator). (2.4)

Then, the wave-operator is nothing more than the time-dependent analogue of the energy-
domain Green function.

2.2. Semiclassical formulation of wave-matrix and complex classical trajectories

Applying the saddle-point approximation to the 1D time-dependent wave-matrix given by
equation (2.3), we can obtain the semiclassical expression for the wave-matrix [19]

〈Q2|�̂+
1(t2)|P1〉 ∼

∑
c.t.

lim
Q1→∞

√
|P1|
2πh̄

eiP1Q1/h̄

[
1

P1

∂2S�

∂E1∂Q2

]1/2

exp

{
i

h̄
S�(Q2, t2,Q1, E1)

}

(2.5)

where the classical action S� is defined by

S�(Q2, t2,Q1, E1) ≡
∫ t2

t1

[P(t)2/2 − V (Q,ωt)] dt + E1(t2 − t1) (2.6)

which is the function of the initial coordinate Q1, initial energy E1, arrival time t2, and
arrival coordinate Q2. Note that the initial time t1 is not an independent variable but
t1 = t1(Q2, t2,Q1, E1).

To describe the tunnelling probability by the semiclassical theory, we should take the
classical trajectories travelling in the complex domain of the phase space, with the classical
equation of motion

d2Q/dt2 = −∂V (Q,ωt)/∂Q. (2.7)

The initial and final sets of dynamical variables deciding the classical action, namely (Q1, E1)

and (Q2, t2) in our case, are the observables specifying the initial and final quantum states to
which real numbers should be assigned. Since t1 is regarded as being canonically conjugate to
E1 and cannot be observed quantum mechanically, we can choose any complex number for it,
and the lapse time s = t2 − t1 may take a complex value [19]. To the best of our knowledge,
legitimate prescription for complexifying canonically paired observables was first presented
by Miller [8].
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To decide contributing classical trajectories satisfying the fixed boundary condition
mentioned above, the initial time t1 is taken as a complex search parameter. In other words,
we should solve a shooting problem; for a relevant choice of the initial time, the trajectory
hits the target Q2 at t2 and otherwise it misses. In order to obtain the quantum probability
as a function of the coordinate, the end coordinate Q2 = Q(t2 − t1, t1, P1,Q1) is scanned
along the real line with fixed t2 ∈ R, then the search parameter t1 will trace 1D curve(s) on the
complex plane.

The 1D set composed of such curves on the complex t1 plane is called M-set according
to Shudo and Ikeda [16], which is defined by [19]

M = ((ξ, η) ∈ R2|Im{Q(t2 − (ξ + iη), ξ + iη, P1,Q1)} = 0) where ξ + iη ≡ t1.

(2.8)

The set M is in general composed of disconnected curves and we call each piece of the
disconnected components the complex branch. A single branch is not always enough to
reconstruct the quantum probability, but two or more branches and sometimes an infinite
number of branches may simultaneously contribute to it, as will be shown later. The M-set
enables us to visualize the structure of the set of initial conditions of contributing trajectories
on the search plane.

We also introduce the L-set [19]

L = ((Q2, P2)|Q2 = Q(t2 − t1, t1, P1,Q1), P2 = P(t2 − t1, t1, P1,Q1), t1 ∈ M) (2.9)

which is the Lagrangian manifold, namely, the set of end points (Q2, P2) of the trajectories at
the given time t2 starting from the initial condition in the M-set.

There are two particular problems peculiar to the complex-domain semiclassical theory,
which introduce some difficulties in the practical construction of the semiclassical wave-
matrix. One is the Stokes phenomenon [29, 30]. The classical trajectories which satisfy
the boundary condition of the wave-matrix do not always contribute to the semiclassical
formula. Indeed, each complexified trajectory in general has a complex conjugate partner,
then Im S�(Q2, t2,Q1, E1) of one of the paired trajectories has a negative sign and the
exponential factor eiS�/h̄ in equation (2.5) diverges in the semiclassical limit of h̄ → 0. Such
trajectories obviously make an unphysical contribution, and they must be removed. Removal
of the unphysical trajectories is carried out by a proper treatment based upon the principle of
exponential dominance [29–32] together with the tree pruning hypothesis proposed by Shudo
and Ikeda [32].

The other problem is that the complexified trajectory in general has singularities unless
the potential is harmonic and, moreover, if they exist, they in general move with the initial
condition (movable singularities) [25]. Even in the 1D static barrier problem (ε = 0), the
contributing complex classical trajectory has singularities and they play a key role in the
description of the barrier tunnelling phenomenon from a semiclassical point of view, which
can be demonstrated rather in detail by the following physical argument.

The quantum scattering eigenfunction has both transmitted and reflected components,
which respectively converge to the plane waves with the constant momenta of opposite signs
in the asymptotic limits (i.e. Q → −∞ or Q → ∞). In order that such a feature is describable
by the semiclassical theory, the (complexified) classical trajectory should not be unique even
though it starts from a given initial condition, and should bifurcate into at least two sorts
of trajectories, namely, transmitted and reflected. This should be, in principle, possible by
properly taking different integration paths, say C and C ′, on the complexified time plane
from the same origin. C and C ′ are chosen in such a way that the integration of the classical
equation of motion along the two paths may yield two trajectories travelling in the two opposite
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asymptotic regions (i.e. Q → −∞ or Q → ∞) in the limit of Re t = Re t ′ → +∞, where t
and t ′ are the two ends of C and C ′, respectively. Since the motion is free from any force at t, the
trajectory ending at t should be continued analytically to that at t ′ along a shortcut connecting
t and t ′, keeping the momentum at the same value. It is, however, impossible because the
momenta have opposite signs at t and t ′, which means that there exists a singularity (or
singularities) in the region between C and C ′.

The presence of singularities results into the multiple-valuedness of the trajectory [19, 20],
which creates further complication in the shooting problem as to the topology of the integration
path going among the singularities under the constraint of the boundary condition. A more
important problem is that the movable singularities often move very sensitively against a slight
change of the initial condition. Such a sensitive movement may change the topology of the
integration path around the singularities, thereby making the nature of the trajectory along
the integration path change drastically. Indeed, as will be elaborated in what follows, this is
the main subject of this paper.

In the actual calculation in this paper, we take a particular form of the potential well
known as the Eckart potential:

V0(Q) = sech2(Q) v(Q,ωt) = sin(ωt) sech2(Q). (2.10)

The Eckart potential has well-defined asymptotic regions due to its exponential decay,
and its quantum mechanics can be solved exactly. Above all, it gives an expression of the
branched trajectories in terms of elementary functions in the unperturbed limit. This is the
very reason why we choose the perturbed Eckart potential as the ‘minimal’ model5.

3. Static barrier

First of all, we would like to discuss the crucial role of singularities (branch points) of the
classical trajectory for the static Eckart barrier problem [33].

3.1. A classical solution of the static barrier

In the limit of ε = 0, the classical equation of motion can be easily integrated, and if the
incident energy E1 is less than the potential barrier, i.e. 0 < E1 < 1, we can immediately
obtain the following solution

Q(t − t1,Q1, P1) = sinh−1(λ cosh(
√

2E1(t − t0))) (3.1)

for the incident condition, Q = Q1 	 1, P = P1 < 0 at t = t1, where the parameter λ is
defined by

λ ≡
√

1/E1 − 1. (3.2)

If 0 < E1 < 1, λ takes a positive real value, while if E1 exceeds unity (i.e. above the
potential barrier), it takes a pure imaginary value, and no classical trajectories can go through
the potential barrier for 0 < E1 < 1.

At t = t0 the trajectory hits the turning point given by

Qturn = Q(t0 − t1) = log
[
λ +

√
λ2 + 1

]
. (3.3)

5 The inverted quadratic potential V0 = −Q2/2 can be taken as an example of a solvable barrier potential, but it has
no asymptotic regions in which the particle moves freely, and the associated singularities sit in the infinity.
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The lapse time t0 − t1, which is the time for the trajectory to spend until the turning point, is
represented by

t0 − t1 = (Q1 − log λ)/
√

2E1 ≡ t01. (3.4)

3.2. Singularities and integration paths of classical trajectories

From the solution of the coordinate Q in equation (3.1), we can easily find that the
trajectory has a branch point as a singularity at the time tsg which is given by the relation,
cosh(

√
2E1(tsg − t0)) = ±i/λ. In terms of the lapse time s = t − t1, the location of

singularities is given by

Sg±
n = (Q1 − log λ ± sinh−1(1/λ))/

√
2E1 + i(−n + 1/2)�tI /2 (3.5)

where �tI is defined by �tI ≡ 2π/
√

2E1. Note that the singularity Sg±
n is just the lapse time

at which Qsg = iπ(m + 1/2), where the potential V0 diverges. It can easily be checked that

the branch point of the type
(
s − Sg±

n

)1/2
appears when the trajectory hits Q = Qsg , because

the classical equation of motion is asymptotically given by d2Q/dt2 ∝ (Q − Qsg)
−3 close to

Qsg . Also note that, if the initial position Q1 and momentum P1 are fixed, the singularities on
the s-plane are independent of t1, because of the time-translational symmetry in autonomous
systems.

Let us see the location of the singularities (see figure 1(a)). Sg−
n and Sg+

n are
located periodically with the interval �tI /2 on two different lines parallel to the Im{s}-
axis, respectively. The interval of the two lines, i.e. the distance between Sg+

n and Sg−
n , is

decided by 2√
2E1

sinh−1(1/λ), namely it is a function of E1. The point t01 is located on the
real axis and is a middle point between the two lines.

In figure 1(a), we also see how the physically significant integration paths go among the
singularities in topologically different ways. In practical calculations, we can take a path
homotopic to one of such representative integration paths Cn. The two figures in figure 1(b)
depict complex trajectories (Q(t), P (t)) for cases of E1 < 1 and E1 > 1, which are obtained
along various integration paths in figure 1(a). Each path Cn defines a branch of the solution
and the trajectory integrated along Cn reaches the reflective or transmissive region passing
through the scattering region. Note that, if the end point of the integration path is taken in the
region

(
Re Sg−

n < Re s(= Re(t2 − t1)) < Re Sg+
n

)
, then the trajectory reaches the scattering

region.
In the case of E1 less than the barrier height, the trajectory starting at the initial point

(Q1, P1) hits the classical turning point at s = t01, and after t01, it rotates along a complex
elliptic orbit in the classically forbidden region of the potential barrier. Such a complex
bouncing trajectory is often called an instanton. After rotating along it n/2 times, the trajectory
is reflected back (to Q = +∞) for an even number integration path, and tunnels toward
Q = −∞ for an odd number n.

Therefore, the periodicity of the singularities in the imaginary direction is attributed to
the periodicity of the complex elliptic orbit, and the existence of such singularities results in
an infinite number of branches of the Riemann sheet on the lapse time plane, half of which
contribute to the reflection and the other half of which yield transmitted components. Since
the presence of the complex elliptic orbit is common to 1D scattering barriers, then the basic
geometrical structure of the Riemann sheet obtained above with respect to the tunnelling
integration paths Cn is not the specific feature of the Eckart barrier, but generic for 1D
scattering barriers as discussed in section 2. The destination of the trajectory, i.e. which is
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(a)

C1

2C

C 0

Re 

sIm

s

t 01

s=0
S +

g1

g2

g3

S +

g1

g2

g3
- S +

-

-S

S

S

ImP

C1

2C C 0

0

0
0

ReP

ReQ

E  <11

0
ReQ

0

0

ReP

ImQ C1

2CC 0

E  >11

(b)

Figure 1. Relation between the integration paths and the complexified trajectories of the
unperturbed barrier system. (a) Singularities and representative integration paths on the lapse
time plane. (b) Complex trajectories obtained along various integration paths depicted in (a). The
cases of E1 < 1 and of E1 > 1 are shown.

either the transmissive side or the reflective side, changes depending on a choice of integration
paths.

It should be noted that all the trajectories with odd integration paths contribute to the
tunnelling component6, but the major contribution to it comes from the trajectory with C1,
because more round trips along the complex ellipse result in a larger imaginary part of the
classical action. Thereby, contributions of the other integration paths C2n−1 (n > 1) are
extremely small and negligible.

6 When including contribution from trajectories integrated along higher-order integration paths Cn (n > 1), we have
to take some care to determine their Stokes coefficients. For a practical treatment of the static barrier case, see, for
example, [34].
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(b)

ImE

Re E

1

1
E 1=1

(a)

S
+
g0

g1

g2

S
+

g0

g1

g2
-

S
+

-

-
S

S

S

s plane

C0

Figure 2. Critical point and movement of the singularities Sg+
n associated with it for the unperturbed

barrier system. (a) Critical point at E1 = 1 on the complexified energy plane. Two paths are
denoted by solid and dashed lines going halfway around it in different directions. (b) Movement
of the singularities Sg+

n together with the integration path C0 is shown on the lapse time plane as
E1 moving along the paths in (a).

If the parameter λ is allowed to take a pure imaginary value, λ = ±i|λ| = ±i
√

1 − 1/E1,
the solution for the case E1 > 1 is also obtained. Then, the location of the singularities on the
s-plane is estimated as follows:

Sg±
n = (Q1 − log |λ| ± cosh−1(1/|λ|))/

√
2E1 + i(−n + 1/2)�tI /2 ∓ i�tI /2. (3.6)

At first glance, the singularities are located in the same way as the case of E1 < 1, but the
nature of the solution is different. That is, the reflective and transmissive branches exchange.
In the case of E1 < 1, if we take, for example, the integration path C0, then we obtain the
solution arriving at a point in the reflective region. On the other hand, in the case of E1 > 1,
the solution reaches the transmissive side for the same integration path (see the bottom figure
in figure 1(b)). For a path Cn, after n/2 times rotations in the classically forbidden region, the
trajectory goes to Q = −∞ for even n and is reflected back to Q = +∞ for odd n.

Such a discontinuous change is attributed to the singular behaviour of the singularities
Sg+

n as E1 goes across 1. This is more comprehensible by analytically continuing the real
energy E1 to the complex plane. From equation (3.5), Sg+

n is evaluated around E1 as

Sg+
n ∼ 1

2E1
(− log{1 − E1} + const + small corrections). (3.7)

For the integration path with a finite lapse time (s = t2 − t1) such as C0, there exists a path
of E1 which goes halfway, clockwise or anticlockwise, around the point E1 = 1, keeping
the distance from it short enough (see figure 2(a)), so that with movement of E1 along the
path, all Sg+

n can go far away from the origin and return to the original sites avoiding the
integration path, shifting by ±�tI /2 in the direction of the imaginary axis. (The sign depends
on a choice of paths; see figure 2(b).) This fact means that the reflective and transmissive
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branches exchange, and the destination of the trajectory along the path changes abruptly but
continuously from the reflective side to the transmission side in the case of C0.

Let us regard the movable singularity as a function of the initial condition(s). We call the
particular initial value at which all or a part of the singularities exhibit singular behaviour the
critical point. In short, the critical point is the singular point of the movable singularities.

It is worth mentioning the trajectory launched from the critical initial condition. In the
limit of E1 → 1, the positions of the two types of singularity are, respectively, given by

Sg−
n → Q1/

√
2 − log 2/

√
2 + i(−n + 1/2)�tI /2 (3.8)

Sg+
n ∼ Q1/

√
2 + log(2/λ2)/

√
2 + i(−n + 1/2)�tI /2 → ∞. (3.9)

Thus, the singularities Sg−
n remain at finite position, and only Sg+

n diverge. The point t01

which is the lapse time spent until the turning point also diverges at E1 = 1:

t01 = t0 − t1 = (Q1 − log λ)/
√

2 → ∞. (3.10)

These divergences are the reflection that the trajectory is on the stable manifold of the unstable
fixed point at the origin. The trajectory on the stable manifold is represented by

Q(t − t1,Q1, P1) = sinh−1(e−√
2(t−µ)) (3.11)

where µ is a parameter defined by the initial condition, i.e.

µ ≡ t1 + (Q1 − log 2)/
√

2. (3.12)

The critical point emerges also in the periodically perturbed problem and the above-discussed
features around it play a key role in understanding the characteristic tunnelling phenomenon
in the strong perturbation regime. This is the main subject in the following arguments.

4. Critical point and fringed tunnelling

On the basis of the arguments in the previous section together with simple intuitive
consideration, we predict that the critical point always emerges on the t1-plane of the
periodically perturbed system. We also show some numerical evidence that the critical point
drastically influences the nature of tunnelling trajectories and causes the fringed tunnelling in
the strong perturbation regime.

4.1. Effects of the periodic perturbation

In the case of the 1D unperturbed tunnelling problem, the movable singularity is the function
of E1 alone, if the initial coordinate Q1 is chosen in the asymptotic region, and so, given the
incident beam set, E1 is decided and there is no fear that the singularity moves.

However, in 1.5-degrees-of-freedom systems, besides E1 and Q1, t1 is an additional
element of the initial condition. Given the incident beam set, the movement of t1 on the
C-plane as the search parameter causes the movement of the movable singularity on the lapse
time plane, which may become singular at a particular t1 = t1c, namely a manifestation of the
critical point.

Indeed, by simple physical consideration we can point out that the emergence of the
critical point is quite natural. Here we suppose that ω is so small that the perturbation does
not change significantly in the time scale of the particle passing through the scattering region.
Taking t1 ∈ C and setting the integration path such as C0 from t1, then the time th at which the
particle reaches the scattering region is the function of t1 alone and is roughly estimated by

th(t1) ∼ t1 + Q1/|P1|. (4.1)
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On the other hand, the potential barrier height at t = th is given by

V (Q = 0, ωth) = (1 + ε sin ωth). (4.2)

Since th has an imaginary part, the amplitude of the perturbation seems as if it is amplified as
ε → ε eω|Im th|, and the lower bound of its oscillation is reduced to 1 − ε eω|Im th|. Therefore,
even when ε is small enough and E1 is much less than 1, which means that the particle cannot
go through the potential by the real classical trajectory, it is possible for the relation

E1 = V (Q = 0, ωth(t1)) (4.3)

to be satisfied by a particular choice of t1, if |Im t1| is taken to be sufficiently large. Since
we suppose the low-frequency limit of the perturbation, the potential is constant when the
particle passes through the scattering region, and our problem is reduced to the 1D tunnelling
problem discussed in the previous section. The condition (4.3) is nothing more than the critical
condition that the incident energy is equal to the barrier height, and the particular point t1 that
satisfies the condition (4.3) can be regarded as the ‘critical point’ t1c. From the periodicity
of the perturbation, critical points appear periodically on the t1-plane. As discussed in
section 3.2, the nature of the trajectory t1 ∼ t1c may change drastically, if t1 is traced close
to t1c.

If either E1 is much less than 1, i.e. the unperturbed potential height, and/or the
perturbation strength is small enough, the imaginary depth of the ‘critical point’ t1c that
satisfies the condition (4.3) will be so large that t1c will be far from the initial times of major
reflected and transmitted trajectories which are calculated along the major integration paths
C0 and C1, respectively. In such a case, the presence of the critical point does not effectively
influence the quantum mechanical behaviour of the system. Such is a situation in the weak
perturbation regime, in which the perturbation expansion approach based on the instanton
works excellently well [20].

However, if E1 is near 1 or ε is large enough, then the critical point moves toward the real
axis and may drastically disturb the original nature of the trajectories defined along the major
integration paths. Such is a typical situation generically observed in the strong perturbation
regime.

4.2. Numerical example of the critical point

In practice, it is found numerically that such a particular initial time t1c, i.e. the critical point,
is always found in the initial time plane t1 independent of the strength of the perturbation ε,
although the imaginary depth of t1c changes with ε, namely t1c moves down to the real axis with
increase of ε. Just as expected above, when ε exceeds a certain value εc, t1c affects the major
contributing tunnelling trajectories with the integration path C1. It is in just such a regime that
the fringed patterns on the tunnelling component are observed. When the observatory time t2
is fixed, we can decide the set of the initial points of the trajectories which satisfy the boundary
condition of the semiclassical wave-matrix, i.e. the M-set. Concerning the M-set, there exists
a remarkable fact that the critical point t1c is always accompanied by a characteristic part of
the branch passing very close to it, say Mc, which plays an important role in the construction
of the fringed wave pattern on the tunnelling component with the semiclassical formula.

Let us see a typical numerical example, which is obtained in the strong perturbation
regime (ε = 0.2, ω = 0.3 and E1 = 0.75). Here we do not show the whole M-set
(see the next subsection), but a magnified picture of M-set near a certain critical point in
figure 3(a). As stated above, we can find Mc running very close to the critical point t1c.
Figure 3(b) shows the movement of singularities on the lapse time plane together with the
integration path C1. When the initial time t1 is at point 1 in figure 3(a), the topology of
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s

C1

Figure 3. Switching of the path topology induced by the divergence movement of the
singularities Sg+

n at a critical point under a strong perturbation. The parameters are set as
follows: ε = 0.2, E1 = 0.75, ω = 0.3, h̄ = 1000/(3π × 210) ∼ 0.1036, and ωt2 = 0(mod 2π).
(a) Magnified picture of the vicinity of the critical point t1c , which corresponds to the first critical
point in figure 4(a). The characteristic subset Mc (the branch 1 in figure 4(a)) exists passing close
to the critical point t1c . (b) The singularities Sg+

n move detouring the integration path C1 on the
lapse time plane, when t1 varies as 1 → 2 → 3 along Mc on the t1− plane in (a).

the integration path is essentially the same as the case of E1 < 1 in the static limit, and the
trajectory reaches the transmissive side at t = t2. Moving the initial time t1 along Mc from
point 1 to point 3, the singularities Sg+

n simultaneously shift down avoiding the integration
path because of their own divergence behaviour (see figure 3(b)). As a result, the end of the
trajectory traverses the phase space from the transmissive quadrant (P2 < 0,Q2 < 0) to the
reflective one (P2 > 0,Q2 > 0), as t1 passes close to t1c along Mc. In other words, although
the integration path C1 is fixed, its topological nature with respect to the singularities changes
during that process, thereby inducing the drastic change in the destination of the trajectory.
(It should be remarked that, in the rigorous sense, the end point of the integration path moves
with t1, namely s = t2 − t1(t2 fixed), but its movement is negligible, because the distance
between points 1 and 3 is negligibly small.) The set of end points of the trajectories with their
initial points on Mc, namely the corresponding L-set, forms a merged object composed of the
tunnelling and reflective branches, which should be defined along the topologically different
paths C1 and C2 in the unperturbed limit, respectively [20–22].

4.3. Semiclassical results in the strong perturbation regime

In order to understand the relation between the critical point and fringed tunnelling in terms
of the semiclassical theory, we have to see the global picture of the M-set and L-set.
Figure 4(a) shows a typical example of the M-set obtained in the strong perturbation regime,
and figure 4(b) depicts the corresponding L-set. On the t1-plane (figure 4(a)), we can find three
critical points each indicated by an X, which appear periodically with the period T (= 2π/ω).
Let us call them the first, second and third critical points in order from right to left. The
structure of branches in the M-set is very complicated, but we can easily recognize that the
branch 1 passes very close to the first critical point. The first critical point and the branch 1
correspond to t1c and Mc shown in figure 3(a), respectively. The branches 2 and 5 also run
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Figure 4. Results of the semiclassical calculation in the strong perturbation regime. The parameters
are the same as in figure 3. (a) M-set. The critical points are indicated by ×. (b) L-set projected
on to the real plane. The characteristic branches 1, 2 and 5 are drawn by thick lines. (c) The
semiclassical probability amplitude (thick line) and weights of the branches (thin lines). The
branches 1, 2 and 3, 4, 5 interfere to yield the fringes of the tunnelling component (Re Q < 0).
(d ) The semiclassical probability amplitude (thick line) compared with the fully quantum
probability amplitude (dashed line).

very close to the second and third critical points, respectively. The branch 5 is too small in this
scale to identify, but its existence is confirmed in a magnified picture, which is not however
shown here. Indeed, it is connected with branches 4 and 6 via caustics forming a chain
structure, which is often observed as a typical structure of the complex branches contributing
to the complex semiclassical formula [16, 17].

In the L-set, all these branches, 1, 2 and 5, stretch over the reflective quadrant (P > 0,

Q > 0) and the transmissive quadrant (P < 0,Q < 0), passing close to the origin. Then, as
discussed above, they can be interpreted as the merged object composed of the tunnelling and
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reflective branches of the unperturbed system. It should be noted that the parts of branches
drawn by dashed lines indicate non-contributing parts which make unphysical contributions,
and they can be removed by the proper treatment of the Stokes phenomenon (for details,
see [19, 20]).

After such a procedure, we sum up all the contributions from the physically legal parts
of the branches in the M-set. The probabilistic weights of the branches together with the
total probability obtained by the sum formula are shown in figure 4(c). All the probabilistic
weights are multiplied by 10−4 for convenience of comparison with the total probability.
In figure 4(d ) the tunnelling probability obtained by the sum formula is compared with the
result of the purely quantum computation. The semiclassical result reproduces every detail of
the tunnelling wave including the complicated fringed patterns in the ranges indicated by A
and B.

The appearance of fringes on the tunnelling component is the result of a simultaneous
contribution of multiple tunnelling trajectories to the sum formula. Indeed, in the L-set, we
can find that two or more branches exist in the ranges of the fringed tunnelling, e.g. 1, 2 for A
and 3, 4, 5 for B, and these groups of branches have nearly equal weights in the regions A and
B, respectively (see figure 4(c)). The additional branches 3 and 4 contributing to the fringe
are considered as those bifurcated from branch 2 in time evolution, and form a chain structure
with 2 and 5.

Therefore, the series of branches 1, 2, 5 respectively associated with the first, second and
third critical points seems to play an important role in construction of interference fringes
on the tunnelling component. In the L-set, they traverse the phase space and thus contribute
simultaneously to the wave-matrix. The simultaneous contribution results in the remarkable
fringe pattern on the tunnelling wavefunction, if their weights are comparable.

5. Analyses of the critical point and the M-set around it in the strong perturbation
regime

In this section, we analytically clarify the underlying mechanism of the path-topology
switching of the tunnelling trajectory and we answer the following question: why do the
branches dominantly contributing to the fringed tunnelling appear by virtue of the strong
perturbation? The critical point t1 = t1c plays a key role in implementing the analyses. The
detailed study of this object leads us to understanding characteristics of the critical point and
the M-set close to it, which are summarized as follows.

(1) The intersection between the CSM and the incident beam set I ≡ {Q,P, t1|Q = Q1, P =
P1, t1 ∈ C} exists at an arbitrary perturbation strength, and if t = t1c is the intersection,
then t1c + T (where T is the period of the perturbation) is also the intersection because of
the periodic nature of the perturbation.

(2a) The intersection t1c is the critical point of the singularities Sg+
n in the sense that the

singularity diverges logarithmically as Sg+
n ∼ −log(t1 − t1c)/ν at t1 = t1c.

(2b) In the close vicinity of any critical point there always exists a subset of the M-set. We
denote such a subset by Mc.

(3) As t1 is moved along Mc, the end point of the trajectory (Q(t2 − t1, t1), P (t2 − t1, t1)) at
t = t2 traverses continuously but abruptly from the transmissive side to the reflective side
(and vice versa) passing close to the origin O.

In the following, to clarify the above natures, theoretical analyses are developed by
introducing the Melnikov method and an adiabatic solution in the low-frequency limit.
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As will be discussed in the last part of the present section, the assertions of the above items
lead us to understanding the underlying classical mechanism of the fringed tunnelling.

5.1. Item 1: intersection of CSM with the incident beam set

First, we would like to prove, by using the Melnikov method, that an intersection between the
incident beam set and the stable manifold always exists in the complex domain, even if the
strength of the perturbation is so small that an entanglement among them does not occur in
the real phase space.

Let us divide the Hamiltonian into the unperturbed part and the perturbed part

H(Q,P,ωt) = H0(Q, P ) + H1(Q, t) (5.1)

where

H0 = P 2/2 + V0(Q) H1 = εv(Q,ωt). (5.2)

Both the unperturbed and perturbed systems have an unstable fixed point at the origin O
because of the symmetry. (It should be noted that the unstable fixed point becomes an unstable
periodic orbit if ε = 0.) Let (Qs(t), Ps(t)) be a trajectory on the stable manifold of the
unstable point O, then (Qs(t), Ps(t)) approaches O in the limit of t → ∞.

Then the energy of the trajectory measured from O, which is denoted by �HM , should be
expressed by

�HM ≡ H(Qs(t), Ps(t), t) − H(Q = 0, P = 0, t)

=
∫ t

∞

{
∂H1

∂t ′
(Qs(t

′), t ′) − ∂H1

∂t ′
(Q = 0, t ′)

}
dt ′. (5.3)

As the lowest-order approximation, the trajectory (Qs, Ps) may be replaced by a trajectory on
the unperturbed stable manifold (Qs0, Ps0) given by equation (3.11), and �HM is approximated
by

�HM ∼
∫ t

∞

{
∂H1

∂t ′
(Qs0(t

′), t ′) − ∂H1

∂t ′
(Q = 0, t ′)

}
dt ′ (5.4)

which is nothing more than the Melnikov function [35] for scattering systems.
The energy at the origin is just the height of the time-dependent potential barrier:

a(t) ≡ H(Q = 0, P = 0, t) = 1 + ε sin(ωt). (5.5)

Using this together with equation (3.11), the Melnikov function (5.4) is evaluated, in the limit
of t − µ → −∞, as follows:

�HM(t) ∼ −2ωε sin ωµ

∫ ∞

0

sin ωs

1 + e2
√

2s
ds − a(t) + a(µ). (5.6)

Finally from equations (5.3), (5.5) and (5.6), the energy at the initial time t = t1 is given by

H(t1) ∼ 1 + ε(1 − χ(ω)) sin ωµ (5.7)

where

χ(ω) ≡ 2ω

∫ ∞

0

sin ωs

1 + e2
√

2s
ds (5.8)

and µ and t1 are related by equation (3.12).
Let us see a numerical result. Figure 5 depicts the CSM calculated by using equation (5.7),

which forms a 2D surface in the 3D space, where the axes x, y and z indicate Re E1, Re µ

and Im µ, respectively. Note that for visualization the axis of Im E1 is omitted in the picture.
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Im µ

Re µReE1

Figure 5. Complexified stable manifold calculated by the Melnikov method.

The curved bottom line (Im µ = 0) indicates the real stable manifold. The energy on the CSM
is no longer real valued, thus it takes a real value only on 1D curves drawn by thick lines,
which form ridge and valley lines of the surface. Since the initial energy E1

(=P 2
1

/
2
)

takes a
real value on the incident beam set, then µc at which H(t1(µc) = t1c) = E1 ∈ R should be
located at a point on the ridge or valley line or the bottom line. Indeed, the crossing condition
for µc between the stable manifold and the incident beam set is given as follows:

E1 = P 2
1

/
2 = 1 + ε(1 − χ(ω)) sin ωµc. (5.9)

Using the definition of the parameter µ given by equation (3.12), the intersection t1c is decided
as the lowest-order approximation by the above relation. When E1 is considerably less than 1,
the real intersections, i.e. Im t1c = Im µc = 0, exist only for a sufficiently strong perturbation
strength such that ε � εth ≡ |(1 − E1)/(1 − χ(ω))|, but if the intersection is allowed to be
complex, it may exist at an arbitrarily weak perturbation strength. Indeed, the complexified
intersections µc are decided as

ω Re µc = 3π/2 + 2nπ (5.10)

cosh(ω Im µc) = ε−1(1 − E1)/(1 − χ(ω)). (5.11)

In other words, the complex intersections

Re t1c = Re µc − (Q1 − log 2)/
√

2 = (3/2 + 2n)π/ω − (Q1 − log 2)/
√

2 (5.12)

Im t1c = Im µc = ω−1 cosh−1{ε−1(1 − E1)/(1 − χ(ω))} (5.13)

exist periodically at the interval T = 2π/ω, even if the real intersections disappear in
the weaker range of perturbation such that ε < εth. We comment that the evaluation of
equation (5.13) agrees well with the numerical estimation of Im t1c.

5.2. Item 2: a solution of the low-frequency-limit

5.2.1. Low-frequency approximation. In this section we justify the two assertions
summarized by items (2a) and (2b). For this purpose we introduce an approximate fully-
nonlinear solution which is correct in the low-frequency limit of the perturbation (ω � 1).
Using the solution, we prove the two assertions. Our treatment is approximate but provides a
consistent scenario which describes what happens close to the critical point.

It should be noted that in a previous paper [21] we have given a brief sketch of the proofs of
items (2a) and (2b) based upon the linear approximation in the neighbourhood of the unstable
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fixed point. The linear theory is quite general and is independent of details of a model system,
but it contains some basic assumption about the relation between the scattering region and the
asymptotic region. The fully-nonlinear approach presented here overcomes such an essential
defect.

Now, we assume the following form of the solution which can be considered as a natural
extension of the unperturbed solution equation (3.1):

sinh Q(t) = r(t) cosh φ(t). (5.14)

We substitute it into the equation of motion

Q̈ = 2a(t)
sinh Q

cosh3 Q
(5.15)

where a(t) is defined by equation (5.5), and the equation

d

dt
{r2φ̇} sinh(φ) − [2E(t) − φ̇2]r2 cosh(φ) + rr̈ cosh(φ) = 0 (5.16)

immediately follows. The low-frequency approximation (or adiabatic approximation) means
negligibility of the third term containing the second-order derivative of the amplitude r. We
first decide the phase variable φ by the relation

φ̇(t) =
√

2E(t) (5.17)

then equation (5.16) is reduced to

d

dt
{r(t)2φ̇(t)} = 0 namely r(t) = α

{2E(t)}1/4
(5.18)

where α is a certain constant of motion, which is decided by the initial condition.
Equation (5.18) implies that the adiabatic approximation dropping d2r(t)

dt2 is equivalent to

neglecting the second-order derivative d2E(t)

dt2

/
E(t) compared with dE(t)

dt

/
E(t). Equation (5.17)

is solved simultaneously with the energy gain equation, i.e.

dE(t)

dt
= ȧ(t)h(t) (5.19)

where

h(t) = {cosh2 Q(t)}−1 = {1 + r(t)2 cosh2 φ(t)}−1 (5.20)

under the initial condition (φ0 = φ(t0), E0 = E(t0)) at t = t0, which is conventionally taken
in the scattering region. We have three free parameters, φ0, E0 and α, but E0 and α are not
independent of each other. To show this we see that the momentum P(t) = dQ(t)

dt
is given by

P(t) =
√

2Er(t) sinh(φ(t))/cosh Q(t) (5.21)

neglecting the correction of O(εω), and substitution of equations (5.14) and (5.21) into the
expression of the energy E = P 2/2 + a(t)/ cosh2 Q yields the relation

E0 = a(t0)/{1 + α2/
√

2E0}. (5.22)

Without loss of generality, we may choose t0 as the time at which the phase vanishes φ(t0) = 0.
In the unperturbed limit, t0 is the time when the trajectory reaches the turning point.
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Figure 6. Behaviour of the function h(t) defined by equation (5.20) near the gate µ∓. (a) Positions
of the gates µ∓ on the complex t plane. An integration path Cn passing through the gates µ∓
is also drawn. (b) Re h(t) along the path Cn. Note that, if |α| � 1, then |Re h(t)| 	 |Im h(t)|.
(c) Re ḣ(t) along the path Cn.

5.2.2. Gates of the scattering region, and estimation of energy and phase variables. If we
neglect the perturbation, then E(t) = E0 = const, and φ(t) and r(t) are expressed as

φ(t) =
√

2E0(t − t0) and r(t) = α/(2E0)
1/4 (5.23)

from equations (5.17) and (5.18). With these approximations, we examine the feature of the
function h(t), which plays a key role in the dynamics dictated by equations (5.17) and (5.18)
through equation (5.19). The integration path is taken so as to go between the singularities.
Generally including the case of ε = 0 as well, it is convenient to make it pass through the two
points µ∓ called ‘gates’, which are defined by

d2h(t)/dφ2|t=µ∓ = 0 (5.24)

where the differentiation is executed regarding t as the function of φ (see appendix A for more
details). In the case of ε = 0, equation (5.24) is equivalent to d2h(t = µ∓)/dt2 = 0 (see
equation (5.23)), and µ∓ are just the middle points of two adjacent singularities tsg

(= Sg∓
n +t1

)
and t ′sg

(= Sg∓
n+1 + t1

)
, which are the times making h(t) (or potential) singular, namely,

cosh φ(tsg) = ±i/r (see section 3.2). Substitution of equation (5.20) into equation (5.24)
together with equation (5.22) implies that µ∓ are decided as functions of α and t0. If the
integration path is parallel to the real axis in neighbourhoods of µ∓ (see figure 6(a)), h(t)

increases abruptly from 0 to a constant close to 1 at µ− and decreases from the constant to zero
at µ+ (see figure 6(b)). From equation (5.19) with equation (5.20), the energy gain (or loss)
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along the integration path occurs only in the scattering region between the two gates; then, the
gates µ− and µ+ are called the entrance and exit gates, respectively. Note that µ− becomes
the parameter µ defined for the unperturbed system by equation (3.12) in the limit α → 0 and
ε → 0. The particle travels freely at a constant momentum outside the gates, whereas it is
perturbed by the scattering potential inside the gates. Such a definite feature makes it easier
to evaluate both φ(t) and E(t) in the practical calculation. Indeed, as is fully described in
appendix A in detail, the time-dependent energy is expressed as

E(t) =
{
a(t)h(t) − a(maxR{t, µ−})(h(t) − h(t0)) (if Re {t − t0} < 0)

a(t)h(t) − a(minR{t, µ+})(h(t) − h(t0)) (if Re {t − t0} > 0)
(5.25)

where a small correction of O(εω) is neglected in the adiabatic limit. maxR and minR are
respectively defined by

maxR(z1, z2) =
{
z1 if Re{z1 − z2} � 0
z2 if Re{z2 − z1} < 0

minR(z1, z2) =
{
z2 if Re{z1 − z2} � 0
z1 if Re{z2 − z1} < 0

.

(5.26)

Using equation (5.25) in equation (5.17) and integrating it, φ(t) is expressed in the
following form

φ(t) =
∫ µ−

t0

ds
√

2a(s)h(t0) +
√

2a(µ−)h(t0)(t − µ−) (if Re{t} � Re{µ−}) (5.27)

φ(t) =
∫ t

t0

ds
√

2a(s)h(t0) (if Re{µ−} � Re{t} � Re{µ+})
(5.28)

φ(t) =
∫ µ+

t0

ds
√

2a(s)h(t0) +
√

2a(µ+)h(t0)(t − µ+) (if Re{t} � Re{µ+}) (5.29)

where terms of O(εω) are omitted again.
Here we note that, by taking the limit α → 0, the solution describes the family of

trajectories on the stable manifold of the unstable fixed point O. For this purpose, we consider
the local behaviour of the solution close to O by taking t inside the two gates, then the linear
approximation, i.e. sinh Q ∼ Q and sechQ ∼ 1, can be applied. Indeed, equations (5.14) and
(5.21) together with equations (5.18), (5.25) and (5.28) yield

Q(t) = α2χ+(t) eν(t−µ̄−) + χ−(t) e−ν(t−µ̄−)

(5.30)
P(t) =

√
2a(t)[α2χ+(t) eν(t−µ̄−) − χ−(t) e−ν(t−µ̄−)]

where the estimation

h(t0) = 1 − α2/
√

2 + O(α2ε) + O(α4) → 1 (α → 1) (5.31)

obtained by equation (5.20) with equations (5.18), (5.25) and (5.22) is used, and

ν ≡ 1

T

∫ T

0

√
2a(s) ds σ (t) ≡

∫ t

0
[
√

2a(s) − ν] ds

(5.32)
µ̄− ≡ [log α + σ(t0)]/ν + t0

where σ(t) = σ(t + T ) is a periodic function of O(ε/ω), and

χ±(t) ≡ exp(±σ(t))/{2[2a(t)]1/4}. (5.33)
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We fix the parameter µ̄− and take the limit α → 0, then equation (5.30) represents a stable
trajectory exponentially approaching O. The complex 1D (real 2D) manifold made up from
such trajectories by scanning the free parameter µ̄ in C forms the local stable manifold
in the close vicinity of O. The set of equations (5.14) and (5.21), which are the global
extension of the local solution, thus represents a globally extended stable manifold in the limit
of α → 0.

5.2.3. Parameters controlling the distance from the critical point. Now in order to decide
the relation among the parameters µ−, t1 and α, we take into account the boundary condition,
P = P1,Q = Q1 at t = t1. From equation (5.25) the relation

E1 = P 2
1

/
2 = a(µ−)h(t0)(=E(µ−)) ∼ a(µ−)[1 − α2/

√
2] (5.34)

follows, where the estimation h(t0) ∼ 1 − α2/
√

2 given by equation (5.31) is used. Then,
µ− is approximately obtained as a function of α and E1. From the definition of µ±
(equation (5.24)), φ± = φ(µ±) are reduced to (see equation (A.1) in appendix A)

e±φ(µ±) = 2 ein±π [1 + r(µ±)2/4 + O(|α|4)]/r(µ±) (5.35)

where n± are integers decided by the choice of the integration path, i.e. the imaginary depths
of the gates µ+ and µ−. By using the boundary condition Q(t1) = Q1(	1), i.e.,

sinh(Q1) = r(t1) cosh φ(t1) → eQ1 = r(t1) e−φ(t1) = α(2E1)
−1/4 e−φ(t1) (5.36)

and the relation φ(t1) − φ(µ−) = (t1 − µ−)
√

2h(t0)a(µ−) (equation (5.27)), together with
equations (5.34) and (5.35) at n− = 0, we can obtain the relation between t1 and µ−,√

2E1(t1 − µ−) + Q1 = log 2 + α2{4
√

2E1}−1. (5.37)

Equations (5.34) and (5.37) provide a set of equations deciding t1 and µ− as functions of α.
Remember that the solution is on the stable manifold in the limit α → 0. Therefore, the
intersection t1c of the stable manifold with the incident beam set is obtained by setting α = 0
in both equations. Indeed, with α = 0 equation (5.34) coincides with equation (5.9) derived
by the Melnikov method, if the term of O(εω) in equation (5.9) is dropped according to the
spirit of adiabatic approximation.

Let t1c and µ−c be t1 and µ− at α = 0, respectively, then from equations (5.34) and (5.37)
we obtain a key result relating the smallness parameter α2 to the deviation of t1 from t1c

α2 = A1(t1 − t1c) = A2(µ− − µ−c) (5.38)

where

A1 ∼ A2 =
√

2{a(µ−c)}−1 da(µ−)

dµ−

∣∣∣∣
µ−=µ−c

(5.39)

is a constant of O(εω), which is controlled by the amplitude of the periodic perturbation. Now
the significance of the smallness parameter α2 is clarified in terms of the boundary condition,
and terms of O(|α|2) giving no quantitatively significant effect on the calculation of the phase
factor φ(t) will be neglected, namely the approximation h(t0) = 1 is used in the following.
For convenience of the following arguments, we introduce

ϕ(t) = φ(t) + log 2 − log{α(2E(t))−1/4}. (5.40)

Then according to the similar manipulations shown above, we can derive explicit expressions
of φ(t) or ϕ(t) by using the boundary condition equations (5.34) and (5.36) for equation (5.27)
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and further combining it with equations (5.28) and (5.29)

ϕ(t) =




√
2E1(t − t1) − Q1 + log 2 (if Re t � Re µ−)

ν(t − µ−) + σ(t) − σ(µ−) + 1
4 log a(t)

E1
+ ϕ(µ−) (if Re µ− � Re t � Re µ+)√

2a(µ+)(t − µ+) + ϕ(µ+) (if Re t � Re µ+)

(5.41)

where the exponent ν and the periodic component σ(t) are defined by equation (5.32), and we
make use of the relation

E(t) =



a(µ−) = E1 (if Re t � Re µ−)

a(t) (if Re µ− � Re t � Re µ+)

a(µ+) (if Re t 	 Re µ+)

(5.42)

which immediately follows from equation (5.25). It is easily shown from equations (5.37) and
(5.41) that the newly introduced phase ϕ(t) almost vanishes at t = µ−:

ϕ(µ−) = −α2{4
√

2E1}−1 ∼ 0. (5.43)

With the use of ϕ(t), the trajectory expressed by equations (5.14) and (5.21) is rewritten
in the following form

sinh Q(t) = α2 eϕ(t)/(4
√

2E(t)) + e−ϕ(t) (5.44)

P(t) = sech Q(t)[α2 eϕ(t)/4 −
√

2E(t) e−ϕ(t)] (5.45)

where equations (5.18) and (5.40) are used. Suppose |Q(t)| � 1, then sinh Q and
sech Q may be replaced by Q and 1, respectively. Such a condition is fulfilled, when
Re µ− � Re t � Re µ+. With this approximation, substitution of the second formula of
equation (5.41) with equation (5.43) into the above equations results in the linearized solution
(5.30), where the parameter µ−, which approaches to the fixed value µ−c in the limit of α → 0,
is identified with µ̄− (rigorously, shifted by an amount).

5.2.4. Item 2a: gates, singularities and logarithmic divergence. Suppose Re µ− � t �
Re µ+, then E(t) and φ(t) are expressed by equations (5.25) and (5.28), respectively, and
equation (5.35) gives the relative location of gates with respect to t0

± (µ± − t0) = ν−1{in±π − log{α/(25/4)} ∓ σ(µ±) ± σ(t0) + log a(µ±)1/4} (5.46)

where ν and σ(t) are defined by equation (5.32). The entrance and exit gates are respectively
aligned on different lines parallel to the imaginary axis, on which they are arranged
approximately at the interval ∼ iπ/ν. Thus, the difference of two sorts of gates is

µ+ − µ− = − log(α2/25/2) − i(n+ + n−)π

ν
+ �µ

(
− log(e−i(n++n−)πα2/25/2)

ν
, µ−

)
(5.47)

where the small correction �µ(x, y) of O(ε) is a periodic function of both x and y with the
period T approximately given by �µ(x, y) = [−σ(x + y) + σ(y) + log{a(x + y)a(y)}/4]/ν.

Next, we consider the singularities tsg
(=Sg±

n + t1
)

of the trajectory, namely, the time at
which it hits the coordinate Q = Qsg making the potential diverge. In the limit of ε = 0, they
are separated from the gates µ± by ±iπ/(2

√
2E1). Application of the oscillatory perturbation

does not change such a character. Indeed, as shown in appendix B, the singularities are sited
within a finite bounded distance from µ+ or µ−, which is insensitive to α

|�tsg| < M/
√

E1 where �tsg ≡ tsg − µ+ (or µ−) (5.48)
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and M is a finite constant of O(1). On the other hand, the distance of µ+ from µ−
diverges logarithmically as α goes to zero, which means that the singularities Sg+

n = tsg − t1
neighbouring the exit gate µ+ also diverge following µ+:

Sg+
n = −{log(α2/25/2) − inπ}/ν + µ−c − t1c + �tsg + �µ(− log(e−iπnα2/25/2)/ν, µ−)

(n : integer). (5.49)

Here, equations (5.47) and (5.48) are used, and t1 and µ− are replaced by t1c and µ−c,
respectively, because we suppose t1 ∼ t1c, i.e. |α2| → 0. Hence, item (2a) is proven. We
remark that the negative singularities Sg−

n neighbouring the entrance gate µ− do not of course
diverge.

5.2.5. Item 2b: the subset Mc. We show that a subset of M, which is denoted by Mc, in
general passes close to the critical point. We suppose Re t � Re µ+, then the second equation
of equation (5.41) is available, and from equation (5.43) we obtain

ϕ(t) = ν(t − µ−c) + σ(t) − σ(µ−c) + log{a(t)/E1}1/4 (5.50)

where the parameters such as µ− and t1 depending very weakly on α2 = A2(µ− − µ−c) =
A1(t1 − t1c) (see equation (5.38)) are replaced by µ−c and t1c, respectively. Thus, ϕ(t) (and
E(t), of course) depends only on t, and is independent of t1. Significant dependence of
the trajectory ((5.44) and (5.45)) on t1 comes from the parameter α2. More explicitly, the
coordinate, for example, depends on t and t1 as

sinh Q(t − t1, t1) = A1(t1 − t1c) eϕ(t)/(4
√

2a(t)) + e−ϕ(t). (5.51)

The M-set is the set of t1 satisfying the boundary condition, sinh Q(t2 − t1, t1) = Q2 ∈ R at
a fixed t = t2 ∈ R. Setting Y ≡ sinh Q2, where Y is an arbitrary real number, it immediately
follows

t1 − t1c = α2/A1 = (C1Y − C2)/A1 (5.52)

with

C1 = 4
√

2E(t2) e−ϕ(t2) C2 = 4
√

2E(t2) e−2ϕ(t2) (5.53)

and the set of t1 satisfying equation (5.52) forms a straight line on the complex t1 plane
parametrized by Y = sinh Q2 ∈ R.

Since ε is sufficiently less than 1, ϕ is well approximated by the first term of the right-
hand side of equation (5.50), i.e. ϕ2 ≡ ϕ(t2) ∼ ν(t2 − µ−c). Thus, by taking t2 	 Re µ−c,
we can make Re ϕ2 large enough, so that the straight line sits at a very small distance
|C2/A1| ∼ e−2Re ϕ2/|A1| from t1c, which is the set Mc introduced in the assertion of item (2b).

A question arising here concerns the possibility of choosing t2 such that t2 � Re µ+ and
t2 − Re µ− 	 1. In the next subsection we show that it is possible.

5.3. Item 3: characteristic neighbourhood of the critical point and switching of path topology

Taking into account all the results in the above analyses, we arrive at a satisfactory
understanding of the remarkable features in the strong coupling regime, i.e. the divergent
behaviour of the singularities and the merger of the transmissive and reflective branches.

Let us fix the observatory time t2(	Re µ−) ∈ R, and consider a half line beginning at t1c

and going away in any direction on the t1-plane. Let t1 approach t1c along the line, then the
parameter α2 goes to zero (equation (5.38)), and the real part of µ+ shifts divergently in the
positive direction because Re{µ+ − µ−} ∼ − 1

ν
log |A1(t1 − t1c)| (from equations (5.38) and

(5.47)). For an arbitrary large t2, there must be a point on the half line, beyond which Re{µ+}
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always exceeds t2. Consequently, there exists a characteristic neighbourhood of the critical
point on the t1-plane, say B(t2); if t1 is taken inside B(t2), then the end of the integration path
is inside the region between the two gates, µ− and µ+, whereas it is out of the gate µ+, if t1 is
outside B(t2). The boundary of B(t2) is thus defined by

t2 = Re{µ+} = Re{µ+ − µ−} + Re{µ−} ∼ Re {−ν−1 log α2 + µ−}. (5.54)

Substitution of equation (5.38) gives the radius of the region B(t2),

|t1 − t1c| ∼ e−ν(t2−Re µ−c)/|A1| (5.55)

where µ− is replaced by µ−c, because t1 → t1c. As discussed in section 5.2.5, the distance
of the subset Mc from t1c is given by |C2/A1| ∼ e−2 Re ϕ2/|A1| ∼ e−2ν(t2−Re µ−c)/|A1|, which
is much less than the radius. Since Mc exists forming a straight line inside B(t2) (see
equation (5.52)), then it should intersect the boundary of B(t2) at two points.

From equation (5.48) the distance between µ+ and the closest singularity is finitely
bounded, Re {µ+ − t1} may be identified with Re{Sg+

n}, and whether t1 is in B(t2) or not
corresponds respectively to

Re{s} < Re
{
Sg+

n

}
or Re{s} > Re

{
Sg+

n

}
(5.56)

where s = t2 − t1 is the lapse time.
The outside of B(t2) corresponds to the asymptotic region, while the inside is mapped on

to the scattering region. As shown in figure 7(a), we take two points on Mc, say a’ and c’, in
opposite sides out of B(t2), and let t1 move along Mc from a’ to c’ going through the region
inside B(t2). We put further some marks on Mc: two intersections a, c and the point b closest
to t1c.

Now we can reproduce the numerically observed behaviour of the singularities around
the integration path Cn as shown in figure 7(b). As t1 moves along Mc going across b, α2

varies according to equation (5.52), i.e. α2 = A1(t1 − t1c) = C1Y − C2. The key is that the
end of the integration path s = t2 − t1 does not move very significantly, because the variable
t1 moves in quite a restricted range, whereas from equation (5.49) the singularity Sg+

n is very
sensitive to t1 as

Sg+
n ∼ −ν−1 log A1(t1 − t1c) = −ν−1 log(C1Y − C2). (5.57)

First, Sg+
n moves on the s-plane to the positive real side. Its real part overtakes Re s(=t2 − t1)

at a (equation (5.54)), and further it increases divergently to reach the maximum as t1 passes b
at Y ∼ 0. As t1 approaches c’, the real part returns to the initial value at a’, but its imaginary
part shifts by ±iπ/ν, i.e. the fundamental interval of the singularities Sg+

n . Thus, all the
singularities Sg+

n , which are aligned on a line, make a detour avoiding the integration path
and eventually shift by their fundamental interval in the imaginary direction. The topology of
the integration path with respect to the singularities is switched abruptly but continuously by
such a divergent detour of the singularities. As discussed in section 4.2, the occurrence of the
drastic phenomenon means that the branches of the M-set corresponding to the transmitted
trajectories and the reflected trajectories, which are separated in the unperturbed limit, are
merged to form a unified branch connecting the transmissive and reflective ones.

In the present formulation, the continuous switch from the transmitted trajectory to the
reflected trajectory (and vice versa) along Mc can be understood immediately. The movement
of t1 along Mc from a to c means a change of the real parameter Y from a negative (positive)
value of O(1) to a positive (negative) value of O(1), changing its sign. In such a process, the
set of coordinate and momentum at the end of the trajectory, i.e.,

Q2 = sinh−1 Y P2 =
√

2a(t2){Y − 2 e−ϕ(t2)}sech Q2 ∼
√

2Y sech(sinh−1 Y ) (5.58)
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Figure 7. Switching of the path-topology. (a) Characteristic neighbourhood of the critical point
B(t2) and the subset passing through it Mc . (b) Movement of the singularities Sg+

n . They diverge
detouring around the integration path Cn as t1 passing through B(t2) along Mc . (c) Movement of
the end point of the trajectory projected on the real phase space as t1 moving along Mc .

which is obtained by setting t = t2 in equation (5.45) and using a(t2) = E(t2), traverses the
phase space from the transmissive quadrant (Re Q2 < 0, Re P2 < 0) to the reflective quadrant
(Re Q2 > 0, Re P2 > 0), and vice versa (see figure 7(c)).

Now we come to a complete understanding of mechanism of the path-topology switching
caused by the divergent detour of the singularities Sg+

n , which was demonstrated numerically
in section 4.2.

5.4. Global structure of branches and classical mechanism of the fringed tunnelling

In this subsection, based upon the analyses developed in the above subsections, we consider
the classical mechanism of the fringed tunnelling. The numerical results in section 4 show that
the characteristic phenomenon in the strong perturbation regime, i.e. the fringed tunnelling,
occurs in the asymptotic region of the transmissive side, and it is attributed to the interference
of the multiple branches, each of which belongs to a different critical point. Hence, if we wish
to understand the underlying mechanism of the fringed tunnelling including the asymptotic
region, we have to take into account the global structure of the L-set far from the scattering
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region by extending the subset Mc to the outside of the characteristic neighbourhood B(t2).
It should be noted that, in section 5.2, the existence of Mc was proven only in B(t2), but it is
really possible to extend our low-frequency analyses naturally to the asymptotic region and to
prove the existence of Mc extended to the asymptotic region. Since a detailed description of
analyses in the asymptotic region will take up much space and we cannot afford to elaborate
on it in this paper, this will be published in a subsequent paper [36].

Here, we simply suppose that Mc is naturally extended to the outside of B(t2) and the
corresponding L-set transverses from one asymptotic side (the transmissive side) to the other
(the reflective side).

5.4.1. Rapid approach of tunnelling trajectories towards real phase plane. First of all, we
consider in more detail how the trajectories starting at Mc in B(t2) travel in the complex phase
space. Then, we suppose, for a while, that initial points of trajectories are in B(t2). From the
discussion of section 5.3, if the lapse time is sufficient large, i.e. t2 − Re µ−c 	 1, the radius
of B(t2) becomes extremely small (equation (5.55)), and then the parameter α of the trajectory
with t1 ∈ B(t2) can be taken exponentially small.

Then as is shown in section 5.2.5, Re µ− � t2 < Re µ+, and we can choose the time path
in such a way that it is on the real axis if Re µ− < Re t (<t2). In equations (5.44) and (5.45),
the phase ϕ(t) is expressed by equation (5.50), and the first term ∼ |α2 eϕ| ∼ |α2| eRe ϕ is
much less than the second term ∼ |e−ϕ| = e−Re ϕ if Re t is not much larger than Re µ−. Then
the trajectory with t1 ∈ B(t2) traces a particular trajectory on the stable manifold, which starts
at t = t1c and is given by setting α = 0, namely,

(Q(t), P (t)) = (sinh−1{e−ϕ(t)},−sech Q(t)
√

2a(t) e−ϕ(t)) (5.59)

until the time tM ∈ R at which the first term balances with the second term, i.e. e−Re ϕ(tM) ∼ |α|.
At t = tM , the trajectory passes close to the unstable fixed point O at distance of O(|α|) from
it, and beyond tM the first term of equation (5.44) (and equation (5.45)) explodes exponentially
and dominates the second term which decreases exponentially. This means that the distance
from a point on the trajectory to the (complexified) unstable manifold decreases exponentially
with the increase in the lapse time; this is just the extension of the so-called lambda lemma to
the complex domain, which has been proven for the real-domain dynamics [35].

Consequently, the tunnelling trajectory has a remarkable characteristic that it swings
across the scattering region guided by the stable and unstable manifolds. We next focus
our attention on the itinerary of the tunnelling trajectory through the complex domain of the
phase space. Taking into account the output boundary condition as well as the relation (5.52),
equation (5.44) is rewritten as

sinh Q = f1(t) + f2(t) where
(5.60)

f1(t) =
√

a(t2)/a(t)(Y − e−ϕ2) e�ϕ(t) f2(t) = e−ϕ2 e−�ϕ(t)

where ϕ2 ≡ ϕ(t2) ∼ ν(t2 − µ−) ∼ −2 log α, and

�ϕ(t) ≡
∫ t

t2

ds
√

2a(s) + log{a(t)/a(t2)}/4 ∼ ν(t − t2) (5.61)

is real-valued because of our choice of the time path. Thus, in equation (5.60) all the
parameters except e±ϕ2 are real numbers. For t ∼ Re µ−(�tM), the second term f2, which
has an appreciable amount of imaginary components, is much larger than the first term f1, but
it decays exponentially with an increase in t. As t exceeds tM, f2 is overwhelmed by f1, which
grows exponentially as e�ϕ(t). But f1 always has a very small imaginary component less than
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e−Re ϕ2 , while the imaginary component of f2 is also very small and is less than O(e−Re ϕ2/2)
for t > tM . It is not difficult to show that P(t)(=Q̇(t)) also exhibits the same behaviour.

Summarizing the above arguments, the tunnelling trajectory, which once moves into the
complex domain of the phase space, approaches the real phase plane very rapidly guided by
the CSM of the unstable fixed point O and after that it moves close to the real plane sticking to
the unstable manifold of O. The major part of the imaginary component of the trajectory for
Re t < tM arises from its stable component, e−ϕ(= f2), which is, except for small corrections
of O(α2), identified with that of the characteristic trajectory on the stable manifold given by
equation (5.59).

It should be emphasized that the remarkable role played by the stable and unstable
manifolds in the tunnelling process is common even in more complicated situations of chaotic
tunnelling, which can be dealt with only by quantum map models [17]. The set of tunnelling
trajectories rapidly approaching toward the chaotic real phase plane plays a predominant role
in chaotic tunnelling of quantum maps and it has a profound relationship with the Julia set,
the key concept in the theory of complex dynamical systems [18]. The present case does not
treat such an actually complicated situation of chaos, but it provides the ‘minimal’ model of
intrinsically chaotic systems which allows detailed analytical studies.

5.4.2. Appearance of an infinite number of possibly contributing tunnelling trajectories.
From the above arguments together with those in section 5.3, the end point (Q2, P2) transverse
the phase space from the transmissive side to the reflective side (and vice versa) along the real
unstable manifold as t1 is moved along Mc. Indeed, if we set Q2 ∈ R in the scattering region
at a given t = t2(∈ R), then Im P2 is estimated from equations (5.58) and (5.50) as

Im P2 = −Im C1 sechQ2 ∼ O(exp(−ν(t2 − Re µ−c))) (5.62)

which means that the imaginary part of P2 decreases exponentially in the limit of Re s(= t2 −
Re t1) → ∞. Therefore, the L-set transverses the phase space along the real unstable manifold
at least in the scattering region, and it is also natural to suppose that the L-set follows the real
unstable manifolds in both asymptotic sides to a certain extent [36].

Now, let us consider the following problem: why and how do the characteristic sets Mc,
each of which passes close to a different critical point, simultaneously contribute to the fringed
tunnelling? Remember that the critical points appear periodically in the initial time plane t1
due to the periodicity of the perturbation, and so do Mc each associated with a different
critical point (see figure 8(a)). As a result, there exist, in the phase space, an infinite number
of branches of the L-set each corresponding to a different Mc (see figure 8(b)). All of them
intersect with the observatory line Q = Q2 in the phase space and contribute to the tunnelling
probability.

The intersection of the stable manifold with the incident beam set takes place in the
complex phase space at an arbitrary perturbation strength ε. As ε increases and exceeds εth

(see section 5.1), the complex intersection represented by t1c reaches the real phase plane, and
a complicated heteroclinic-like entanglement between two different sorts of the invariant sets,
namely, the stable manifold and the incident beam set (which is extended to the scattering
region), should emerge in the real phase space, which is a common situation in nonintegrable
scattered-reaction systems [37, 38]. However, it should be emphasized that the entanglement
between the two objects is taking place at an arbitrary perturbation strength in the complexified
phase space, and the appearance of multiply coexisting branches of the L-set demonstrated
in the above paragraph is just the manifestation of the heteroclinic-like entanglement in the
complex domain.
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Figure 8. A sketch of how multiple branches contribute to the interference fringe. (a) Periodicity
of critical points in t1 plane, each of which is accompanied by a branch passing close to it. (b) The
branches in the L-set. The fringed patterns are created by the interference of the branches in the
hatched regions.

5.4.3. Actual contribution from multiple tunnelling trajectories. Given t2 and Q2, an infinite
number of trajectories can contribute to the semiclassical wave-matrix (2.3). Based upon
the remarkable features of the trajectories approaching the real plane guided by the stable
manifold, we can show that Im S� of each trajectory, which is the primary factor controlling
the extent of contribution to the wave-matrix, is almost the same.

Let us denote the set Mc close to the nth critical point t
(n)
1c = t

(0)
1c − nT (n ∈ N) by M(n)

c ,
where t

(0)
1c is a properly chosen critical point. The superscript (n) is used to denote explicitly the

assignment to t
(n)
1c . Because of the periodicity of the perturbation, if the same integration path

is taken, all the characteristic trajectories starting at t
(n)
1c have the same form as the function of

the lapse time s independent of n. Then, except for the correction of O(|α(n)|2) � 1, every
trajectory initially at t1 ∈ M(n)

c traces the same itinerary (i.e. the characteristic trajectory (5.59))
in the complex phase space independent of n, until it approaches the real plane. Furthermore,
most of the imaginary component of the trajectory is carried by its stable component e−ϕ ,
which is substantially identified with that of the characteristic trajectory (5.59). Therefore,
Im S� is evaluated by substituting equation (5.59) into equation (2.6).

As a result, Im S
(n)
� is almost the same for all the trajectories started at t1 ∈ M(n)

c , whereas
Re S

(n)
� may be significantly different reflecting the difference in the itinerary after approaching

close to the real plane, which is represented by f1(t) in equation (5.60), or the first terms of
equations (5.44) and (5.45). The contribution from M(n)

c is, therefore, decided by the classical
amplitude factor

|∂2S�/∂E1∂Q2|1/2 = |∂Q2(t2, t1, P1,Q1)/∂t1|−1/2 (5.63)
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which is considered as the secondary factor in the ordinary situation of the tunnelling process.
The right-hand side tells us that Q must be known as a function of initial condition including
t1. Returning to equation (5.51), we immediately obtain

|∂Q(t2 − t1, t1,Q1, P1)/∂t1|−1 = |4
√

2a(t2) cosh(Q2) e−ϕ(T2)/A1|. (5.64)

For large n, the amplitude factor decays exponentially as |∂2S�/∂E1∂Q2|1/2 ∝ e−nT/2.
Consequently, among an infinite number of the possibly contributing tunnelling trajectories,
only the finite number of M(n)

c with relatively small n actually contribute to the tunnelling
probability at Q2 (see figure 8(b)). All the claims presented above are obtained supposing that
Q2 is in the scattering region, but they all hold correct even in the asymptotic region [36].

As shown in figure 4, the interference of the characteristic branches 1 and 2 makes the
fringed pattern in the region A, while branch 5 together with branches 3 and 4, which are
bifurcated from branch 2 in time evolution, contributes in the region B. Hence, it is confirmed
that the branches associated with the critical points have a significant effect on the construction
of the fringed pattern, and we come to a complete understanding of underlying mechanism of
the fringed tunnelling.

5.4.4. Characteristic perturbation strength. The most important fact is that the tunnelling
mechanism in the regime of the perturbation strength strong enough to yield the fringed
tunnelling is quite different from the (perturbed) instanton mechanism of the tunnelling in
the weak perturbation regime [19, 20]. We discuss here how the transition of the tunnelling
mechanism occurs as the perturbation strength is increased.

As was stressed in section 5.1, there always exist the critical points t1c, even if the strength
of the perturbation is arbitrarily small. Such critical points, however, have a large imaginary
component and are located so deeply in the imaginary domain of the complex plane that they
do not affect the dominating instanton branches associated with the integration path C1. As
the perturbation increases, the imaginary component of the critical points decreases and they
finally go across the dominant branches with the path C1. This is the case that the structure of
the branches are broken up and reconstructed by the influence of the critical points.

Using the above criterion, it is possible to estimate the characteristic value of the
perturbation strength, above which the critical point significantly influences the dominant
branches and results in the fringed tunnelling. The imaginary depth of the dominant branches
of the M-set is roughly estimated as |Im(t2 − t1)| ∼ π/ν. Therefore, the characteristic
value ε = εc is the value at which the critical point t1c passing through the border of the
Riemann sheets of the dominant and next-order branches, whose imaginary depth is estimated
as ∼ 3π/2ν:

|Im t1c| ∼ 3π/2ν. (5.65)

Substituting the estimation of Im t1c by the Melnikov method (equation (5.13)) into equation
(5.65) and setting ν ∼ √

2, we obtain the characteristic perturbation strength

εc ∼ (1 − E1)/{(1 − χ(ω)) cosh(3ωπ/2
√

2)} (5.66)

above which the fringed tunnelling may be observed. In other words, if ε is given, the fringed
tunnelling is observed above the characteristic energy

E1c = 1 − ε{(1 − χ(ω)) cosh(3ωπ/2
√

2)}. (5.67)

Sufficiently below it the 1D instanton picture works well.
Finally, we compare in figure 9 the above theoretical value of εc with the numerically

decided characteristic perturbation strength above which the tunnelling component exhibits a
definite fringed pattern. The numerical εc is decided at three relatively small ω. The agreement
of the theory with the numerical data seems to be satisfactory.
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Figure 9. The characteristic strength ε versus ω. The solid line indicates the theoretical estimate
of the characteristic strength εc as a function of ω, while the values of εc which are numerically
decided at three relatively small ω are marked by ×.

6. Summary and remarks

The fringed tunnelling, which is observed in 1.5D barrier systems (i.e. periodically driven 1D
barrier systems) and in autonomous 2D barrier systems as well, is regarded as a manifestation
of an intrinsic effect of multi-dimensionality on the tunnelling process. Semiclassical
interpretation of it is successfully attained by taking into account the contribution of multiple
tunnelling trajectories whose character is very different from that of the tunnelling trajectory
such as the instanton of the unperturbed system.

In this paper, we have developed theoretical analyses, which provide us with a complete
understanding of the hidden classical origin behind that simultaneous contribution of multiple
tunnelling trajectories, which is directly reflected in the formation of the interference fringe on
the tunnelling wavefunction. The key object in the analyses is the critical point t1c, at which
the divergent movement of the singularities of the trajectory occurs. It is just the intersection
of the CSM and the incident beam set, i.e. the heteroclinic-like entanglement between the
complexified invariant sets.

The analyses in section 5 are the central part of the present paper, which elucidates the
classical mechanism in the creation of multiple contributing branches by the influence of the
critical points. Previous to this section, we introduced the basic tools such as the M-set (the set
of initial conditions of the contributing trajectories) and the L-set (the Lagrangian manifold),
and discussed the complexified classical dynamics of the unperturbed system. In section 5,
we started our analysis by using the Melnikov method, and showed that the trajectory starting
at the critical point is of a solution of the CSM. Indeed, the critical point is an intersection
between the CSM and the initial time plane t1, and such intersections appear periodically due
to the periodicity of the perturbation. Next, we introduced a solution in the low-frequency
limit that allowed us to investigate the characteristics of the critical point and of the branch
associated with it. If we take an initial time close to t1c, the group of singularities Sg+

n diverges
as Sg+

n ∼ −log(t1 − t1c)/ν, and we always find that the set Mc, a subset of M, forms a
line passing very close to t1c. Furthermore, as t1 is moved along Mc, switching of the path-
topology is induced by the divergent-detouring behaviour of the singularities Sg+

n , and the end
point of the trajectory (Q(t2 − t1, t1), P (t2 − t1, t1)) traverses continuously but abruptly from
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the transmissive side to reflective side (and vice versa) passing close to the unstable fixed point
(or the unstable periodic orbit) at the origin. This means that such an Mc forms a merged
object in the L-set connecting to both transmissive and reflective sides with following the
unstable manifold.

The results of the analyses provide us with a comprehensive understanding of the local
structure near the critical point; in terms of the L-set, the structure of the branches fully inside
the scattering region.

Furthermore, it is natural to assume that such a characteristic branch in the L-set is
extended into the asymptotic regions in both transmissive and reflective sides following the
unstable manifold. Since the periodicity of the perturbation creates an infinite number of the
critical points each accompanied by a corresponding characteristic branch, then an infinite
number of characteristic branches following the unstable manifold appear. And some of
these contribute to the tunnelling probability, and their interference results in the fringed
pattern. Such a structure of the branches reminds us of the complexified heteroclinic-like
entanglement; the incident beam set I entangled with the CSM is mapped to a surface that is
multiply folded in the scattering region piling up on the unstable manifold and being extended
along it, and the characteristic branches are just subsets of the mapped surface of I that satisfy
the output-boundary condition of the wave-matrix.

However, if we wish to more completely understand the underlying mechanism of the
fringed tunnelling, we have to develop an analysis working on the fully asymptotic region,
which naturally leads to the S-matrix theory. Full details concerning the subject will be
published in a forthcoming paper [36].

The character of trajectories contributing to the fringed tunnelling is essentially different
from that of the instanton picture. In application of the 1D instanton theory to a multi-
dimensional system, we have to assume that the system is integrable, and the tunnelling
trajectory running in the complexified phase space follows the complexified invariant surface
of the integrable system, i.e. the complexified KAM torus [9], although it is not the case even
for nearly integrable systems. Indeed, the KAM tori are in general interrupted by a natural
boundary [39]. On the other hand, the trajectories contributing to the fringed tunnelling are
guided by the CSM from the beginning, thereby approaching the real plane by the attraction
of the unstable fixed point (generally unstable periodic orbit). After that the trajectory is
repelled by the fixed point and travels very close to the real plane, being scattered toward the
asymptotic region along the unstable manifold.

It is recognized that such a characteristic dynamical process is commonly observed in the
chaotic tunnelling process of quantum maps [17, 18]. The quantum map has no continuous
time and so has no counterparts of the time singularity and of the critical point as well. It
is surprising that, in spite of such a marked difference in the mathematical nature of models,
the physical interpretation of the tunnelling process seems to provide a common picture, at
least on the phenomenological level. Unfortunately, however, the mathematical structure of
the tunnelling mechanism including the relationship with the traditional view of the instanton,
which is the major subject of this paper, is very unclear in the quantum map models because
of the absence of the key concept corresponding to the time singularity. Instead, the presence
of a complex-domain chaos and its relationship to the predominant tunnelling trajectories
are clarified by using the Gaussian map [17]. The chaotic dynamical structure underlying the
new tunnelling mechanism is the issue that still remains inaccessible by the continuous time
system.

The complexified heteroclinic-like entanglement between the incident beam set and the
CSM makes the tunnelling path stick to the complexified stable and unstable manifolds,
which form basic geometrical structures creating the chaotic complexity in the phase space
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in multi-dimensional systems. The appearance of such a heteroclinic-like entanglement in
the complex domain seems to be quite generic in multi-dimensional systems, and the fringed
tunnelling is numerically observed in the autonomous multi-dimensional barrier tunnelling
process [21, 22, 24]. It is safe to say that the classical mechanism which has been clarified in
this paper provides us with a clue to a generic understanding of influence of the complexity
of complexified classical chaos on the tunnelling process observed in multi-dimensional
systems.
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Appendix A. On adiabatic solutions

We first decide the explicit functional form of E(t) by integrating the energy gain
equation (5.19) over t. Then it is more convenient to use φ as the integration variable
instead of t. The relation φ(t) = ∫ t

t0
dt ′

√
2E(t ′) (equation (5.17)) implies that φ can be made

as a single valued function of t. (Even in the scattering region the major part of φ(t) varies
linearly as φ(t) ∼ √

2E(t0)(t − t0), because E(t) varies slowly in time.) When we regard a
function F(t) as a function of φ in place of t, we denote it simply by F(φ).

By using the definition of the gates µ± given by equation (5.24), we obtain

e∓2φ∓ = 4{1 + r(t)2/2 + O(r4)}/r(t)2|t=∓µ (A.1)

where φ∓ = φ(t = µ∓) and very small terms such as d
dt

r(t)2 ∼ O(α2ωε), which is estimated
from equations (5.18) and (5.19), are neglected. The function h introduced by equation (5.20)
can be approximated by

h(φ) = {1 + r2/2 + r2/4 e∓2φ + O(r4)}−1

= {(1 + r2/2)[1 + e∓2(φ−φ∓)]}−1 + O(r4) (A.2)

in the vicinity of t = µ∓ or φ∓ = φ(µ∓).
Equation (A.2) indicates that h(φ) increases abruptly from 0 to 1/(1 + r2) at µ− and

decreases from 1/(1 + r2) to zero at µ+ (see figure 6(b)), if the integration path is taken so as
to be parallel with the real axis in the vicinities of µ∓ as shown in figure 6(a). Therefore, its
derivative dh(φ)/dφ is close to zero except in the vicinities of µ∓, where it has a sharp peak
or valley (see figure 6(c)). We multiply dh

dφ
by a slowly varying function such as a(t) or a(φ)

and integrate it along the integration path from φ = 0 in the direction of Re{φ} increasing
(the forward direction). Then we expand the slowly varying function a(φ) into the Taylor
series (it is an expansion with respect to ω) at minR(φ, φ+) where the absolute value of the
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integrand
∣∣a dh

dφ

∣∣ has a sharp maximum in the range of integration, and retain only the lowest
order expansion term with respect to ω,∫ φ

0

dh(φ′)
dφ′ a(φ′) dφ′ = a(minR{φ, φ+})

∫ φ

0

dh(φ′)
dφ′ dφ′ + correction (A.3)

where the correction is estimated by the second lowest order term of the Taylor expansion of
the slowly varying function at minR{φ, φ+}

|correction| ∼
∣∣∣∣da(φ)

dφ

∣∣∣∣
φ=minR{φ,φ+}

∫ φ

0

∣∣∣∣(φ − φ′)
dh(φ′)

dφ′

∣∣∣∣ dφ′ ∼ O(εω) � 1 (A.4)

and minR is defined by equation (5.26). The integration of equation (5.19) in the forward (i.e.
Re φ increases) yields

E(t) − E(t0) =
∫ t

t0

dt ′
ȧ(t ′)

1 + r2(t ′) cosh2 φ(t ′)
=

∫ φ

0
dφ′ da(φ′)

dφ′ h(φ′)

= a(φ′)h(φ′)|φ′=φ

φ′=0 −
∫ φ

0
dφ′a(φ′)

dh(φ′)
dφ′ (A.5)

and so it is approximated up to the correction of O(εω) by using equation (A.3)

E(t) = a(t)h(t) − a(minR{t, µ+})(h(t) − h(t0)) + O(εω). (A.6)

Here the relation a(φ = 0)h(φ = 0) = a(t0)h(t0) = E(t0) is used.
Omitting the correction of O(εω), the integration forward (Re{t} increases) immediately

yields equation (5.28) for t0 � t � µ+. For t � µ+, on the other hand, we obtain

φ(t) = φ(µ+) +
∫ t

µ+

dt ′
√

2a(µ+)h(t0) + δφ(t). (A.7)

Note that φ(µ+) = ∫ µ+
t0

dt ′
√

2a(t ′)h(t0) (equation (5.28)), and the last term defined by

δφ(t) =
∫ t

µ+

dt ′
{√

2[a(t ′)h(t ′) − a(µ+)(h(t ′) − h(t0))] −
√

2a(µ+)h(t0)
}

(A.8)

gives the correction of O(εω), because it is estimated as∫ t

µ+

2[a(t ′)h(t ′) − a(µ+)h(t ′)]√
2[a(t ′)h(t ′) − a(µ+)(h(t ′) − h(t0))] +

√
2a(µ+)h(t0)

dt ′

∼
∫ t

µ+

[a(t ′)h(t ′) − a(µ+)h(t ′)] dt ′ ∼
∫ t

µ+

[ȧ(µ+)(t
′ − µ+)h(t ′)] dt ′ ∼ O(εω).

Omitting this correction, we obtain equation (5.29). By the same manner, the integration
backward gives equation (5.27)

Appendix B. On singularities of perturbed system

The singularity tsg is the time at which the potential diverges, and so it is the zero of the
denominator of h(t) (see equation (5.20)), namely

r(tsg) cosh φ(tsg) = ±i or approximately r(tsg) e±φ(tsg)
/

2 = ±i (B.1)

in the limit of |α2| � 1. tsg is not far from the gates µ± satisfying equation (5.35):

r(µ±) e±φ(µ±)
/

2 = ±1 + O(r2). (B.2)

In terms of the phase variable the difference is

φ(tsg) − φ(µ±) = ±(±iπ/2 + log(r(µ±)/r(tsg))) (B.3)
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and it is convenient to suppose a path from φ± = φ(µ±) to φsg = φ(tsg) in the φ-space. A
noteworthy fact is that the energy gained along the path diverges logarithmically. Indeed,

E − E(µ+) =
∫ φ

φ+

da(φ′)
dφ′ h(φ′) dφ′

∼ da(φ+)

dφ+

∫ φ−φ+

0

1

1 + e2x
dx

= 1

2

da(φ+)

dφ+
[x − log{cosh x}]|x=φ−φ+

x=0 . (B.4)

Using this result in the phase equation (5.17), we obtain

tsg − µ+ ∼
∫ ±iπ/2

0

dz√
2E(µ+) + a(φ+)′(z − log{cosh z})

(
a(φ+)

′ ≡ da(φ+)

dφ+

)
. (B.5)

Considering that |a(φ+)
′/E(µ+)| ∼ εω � 1, it is easy to show that

|tsg − µ+| = 1√|a(φ+)′|
∫ ±π/2

0
dx{(R1 − log{cos x})2 + (R2 − x)2]}−1/4 (B.6)

where R1 and R2 are certain constants. It can easily be proven to be less than a certain constant

|tsg − µ+| < M/
√

|E(µ+)| (B.7)

where M(>0) is a certain numerical constant.
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